Dual Tuning of Biomass-Derived Hierarchical Carbon Nanostructures for Supercapacitors: the Role of Balanced Meso/Microporosity and Graphene

نویسندگان

  • Zhengju Zhu
  • Hao Jiang
  • Shaojun Guo
  • Qilin Cheng
  • Yanjie Hu
  • Chunzhong Li
چکیده

Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g(-1) at 1 A g(-1) with excellent rate capability (120 F g(-1) at 50 A g(-1)) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets

National Engineering Laboratory for Mode Engineering, Soochow University, Suzho [email protected] Research Center of Cooperative Innovation Micro, Nanofabrication, Soochow University Department of Electrical and Computer Eng N2L 3G1, Canada School of Materials Science and Engineering Georgia 30332, USA. E-mail: zhiqun.lin@m † These authors contributed equally. Cite this: J. Mater. Chem. A, 20...

متن کامل

Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method

Superparamagnetic few-layer graphene nanocomposites (FLG- NCs) can be used for many technological applications, such as solar cells, batteries, touch panels and supercapacitors. In this work, we applied electrochemical exfoliation method as a simple, one step and economical technique to fabricate FLG- NCs. The fabricated Superparamagnetic FLG- NCs were characterized by X-ray diffraction (XRD), ...

متن کامل

Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.

The design and optimization of 3D graphene nanostructures are critically important since the properties of electrochemical energy storages such as supercapacitors can be dramatically enhanced by tunable porous channels. In this work, we have developed porous graphene aerogels from graphene suspensions obtained via electrochemical exfoliation and explored their application as supercapacitor elec...

متن کامل

The Synthesized Reduced Graphene Oxide Enhanced the Capacitive Behavior of Activated Carbon/PVA as Potential Electrode Materials

In this work, activated carbon (AC) derived from biomass wastes was implemented as electrode materials in supercapacitor application. This study has adopted rubber seed shell (RSS) wastes to derive AC via pyrolysis process. Meanwhile, reduced graphene oxide (rGO) was used as an additive material in order to study the effect of the rGO in capacitive behavior. The synthesized rGO was successfully...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015